1
0
Fork 0
mirror of https://github.com/graphhopper/jsprit.git synced 2020-01-24 07:45:05 +01:00

added javadoc

This commit is contained in:
oblonski 2014-02-25 20:15:34 +01:00
parent 6cf6c5fd1f
commit 286617f827

View file

@ -35,8 +35,46 @@ import org.apache.commons.math.stat.descriptive.moment.StandardDeviation;
import org.apache.log4j.Logger; import org.apache.log4j.Logger;
/**
* ThresholdAcceptance-Function defined by Schrimpf et al. (2000).
*
* <p>The <b>idea</b> can be described as follows: Most problems do not only have one unique minimum (maximum) but
* a number of local minima (maxima). To avoid to get stuck in a local minimum at the beginning of a search
* this threshold-acceptance function accepts also worse solution at the beginning (in contrary to a greedy
* approach which only accepts better solutions), and converges to a greedy approach at the end. <br>
* The difficulty is to define (i) an appropriate initial threshold and (ii) a corresponding function describing
* how the threshold converges to zero, i.e. the greedy threshold.
*
* <p>ad i) The initial threshold is determined by a random walk through the search space.
* The random walk currently runs with the following algorithm: src/main/resources/randomWalk.xml. It runs
* as long as it is specified in nuOfWarmupIterations. In the first iteration or walk respectively the algorithm generates a solution.
* This solution in turn is the basis of the next walk yielding to another solution value ... and so on.
* Each solution value is memorized since the initial threshold is essentially a function of the standard deviation of these solution values.
* To be more precise: initial threshold = stddev(solution values) / 2.
*
* <p>ad ii) The threshold of iteration i is determined as follows:
* threshold(i) = initialThreshold * Math.exp(-Math.log(2) * (i / nuOfTotalIterations) / alpha)
* To get a better understanding of the threshold-function go to Wolfram Alpha and plot the following line
* (just copy and paste it into Wolfram's console: <a href="https://www.wolframalpha.com/">www.wolframalpha.com</a>):
* <p>100. * exp(-log(2)* (x/1000) / 0.1) (x from 0 to 1000) (y from 0 to 100)
* <p>with <br>
* initialThreshold = 100<br>
* nuOfTotalIter = 1000<br>
* alpha = 0.1<br>
* x corresponds to i iterations and<br>
* y to the threshold(i)
*
* <p>Gerhard Schrimpf, Johannes Schneider, Hermann Stamm- Wilbrandt, and Gunter Dueck (2000).
* Record breaking optimization results using the ruin and recreate principle.
* Journal of Computational Physics, 159(2):139 171, 2000. ISSN 0021-9991. doi: 10.1006/jcph.1999. 6413.
* URL http://www.sciencedirect.com/science/article/ pii/S0021999199964136
*
* <p>Probably the determination of the initial threshold will be separated from the threshold-acceptance
* function (25.02.14 stefan)
*
* @author schroeder
*
*/
public class SchrimpfAcceptance implements SolutionAcceptor, IterationStartsListener, AlgorithmStartsListener{ public class SchrimpfAcceptance implements SolutionAcceptor, IterationStartsListener, AlgorithmStartsListener{
private static Logger logger = Logger.getLogger(SchrimpfAcceptance.class); private static Logger logger = Logger.getLogger(SchrimpfAcceptance.class);
@ -62,8 +100,6 @@ public class SchrimpfAcceptance implements SolutionAcceptor, IterationStartsList
logger.info("initialise " + this); logger.info("initialise " + this);
} }
@Override @Override
public boolean acceptSolution(Collection<VehicleRoutingProblemSolution> solutions, VehicleRoutingProblemSolution newSolution) { public boolean acceptSolution(Collection<VehicleRoutingProblemSolution> solutions, VehicleRoutingProblemSolution newSolution) {
boolean solutionAccepted = false; boolean solutionAccepted = false;
@ -93,7 +129,6 @@ public class SchrimpfAcceptance implements SolutionAcceptor, IterationStartsList
private double getThreshold(int iteration) { private double getThreshold(int iteration) {
double scheduleVariable = (double) iteration / (double) nOfTotalIterations; double scheduleVariable = (double) iteration / (double) nOfTotalIterations;
// logger.debug("iter="+iteration+" totalIter="+nOfTotalIterations+" scheduling="+scheduleVariable);
double currentThreshold = initialThreshold * Math.exp(-Math.log(2) * scheduleVariable / alpha); double currentThreshold = initialThreshold * Math.exp(-Math.log(2) * scheduleVariable / alpha);
return currentThreshold; return currentThreshold;
} }