mirror of
https://github.com/graphhopper/jsprit.git
synced 2020-01-24 07:45:05 +01:00
added examples illustrating the use of
analysis.toolbox.ComputationalLaboratory.java
This commit is contained in:
parent
e9f36b99dd
commit
407178b9c3
2 changed files with 204 additions and 1 deletions
|
|
@ -0,0 +1,203 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (C) 2013 Stefan Schroeder
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 3.0 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
||||
******************************************************************************/
|
||||
package jsprit.examples;
|
||||
|
||||
import java.util.Collection;
|
||||
|
||||
import org.apache.commons.configuration.XMLConfiguration;
|
||||
|
||||
import jsprit.analysis.toolbox.ComputationalLaboratory;
|
||||
import jsprit.analysis.toolbox.ComputationalLaboratory.CalculationListener;
|
||||
import jsprit.analysis.toolbox.ComputationalLaboratory.DataCollector;
|
||||
import jsprit.analysis.toolbox.Plotter;
|
||||
import jsprit.analysis.toolbox.XYLineChartBuilder;
|
||||
import jsprit.core.algorithm.VehicleRoutingAlgorithm;
|
||||
import jsprit.core.algorithm.VehicleRoutingAlgorithmFactory;
|
||||
import jsprit.core.algorithm.io.AlgorithmConfig;
|
||||
import jsprit.core.algorithm.io.VehicleRoutingAlgorithms;
|
||||
import jsprit.core.algorithm.listener.IterationStartsListener;
|
||||
import jsprit.core.problem.VehicleRoutingProblem;
|
||||
import jsprit.core.problem.solution.VehicleRoutingProblemSolution;
|
||||
import jsprit.core.reporting.SolutionPrinter;
|
||||
import jsprit.core.reporting.SolutionPrinter.Print;
|
||||
import jsprit.core.util.BenchmarkInstance;
|
||||
import jsprit.core.util.Solutions;
|
||||
import jsprit.instance.reader.SolomonReader;
|
||||
import jsprit.util.Examples;
|
||||
|
||||
/**
|
||||
* Based on Solomon's R101 instance
|
||||
*
|
||||
* @author schroeder
|
||||
*
|
||||
*/
|
||||
public class ComputationalExperiments_alphaSenstivity {
|
||||
|
||||
|
||||
public static void main(String[] args) {
|
||||
/*
|
||||
* some preparation - create output folder
|
||||
*/
|
||||
Examples.createOutputFolder();
|
||||
|
||||
/*
|
||||
* Build the problem.
|
||||
*
|
||||
* But define a problem-builder first.
|
||||
*/
|
||||
VehicleRoutingProblem.Builder vrpBuilder = VehicleRoutingProblem.Builder.newInstance();
|
||||
|
||||
/*
|
||||
* A solomonReader reads solomon-instance files, and stores the required information in the builder.
|
||||
*/
|
||||
new SolomonReader(vrpBuilder,100).read("input/R101.txt");
|
||||
|
||||
/*
|
||||
* Finally, the problem can be built. By default, transportCosts are crowFlyDistances (as usually used for vrp-instances).
|
||||
*/
|
||||
VehicleRoutingProblem vrp = vrpBuilder.build();
|
||||
|
||||
/*
|
||||
* Create ComputationalLaboratory
|
||||
*/
|
||||
ComputationalLaboratory computationalLab = new ComputationalLaboratory();
|
||||
/*
|
||||
* add benchmarking instance
|
||||
*/
|
||||
computationalLab.addInstance("SolomonR101", vrp);
|
||||
/*
|
||||
* add algorithms through factories
|
||||
*
|
||||
*
|
||||
*
|
||||
*/
|
||||
for(double alphaVal=0.;alphaVal<.4;alphaVal+=.1){
|
||||
|
||||
final String alpha = String.valueOf(alphaVal).substring(0, 3);
|
||||
computationalLab.addAlgorithmFactory("alpha_"+alpha, new VehicleRoutingAlgorithmFactory() {
|
||||
|
||||
@Override
|
||||
public VehicleRoutingAlgorithm createAlgorithm(VehicleRoutingProblem vrp) {
|
||||
VehicleRoutingAlgorithm vra = VehicleRoutingAlgorithms.createAlgorithm(vrp, getAlgorithmConfig(alpha));
|
||||
return vra;
|
||||
}
|
||||
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* plot search progress of different algorithms
|
||||
*/
|
||||
final XYLineChartBuilder chartBuilder = XYLineChartBuilder.newInstance("alpha-sensitivity", "iterations", "costs");
|
||||
computationalLab.addListener(new CalculationListener() {
|
||||
|
||||
@Override
|
||||
public void calculationStarts(BenchmarkInstance p, final String algorithmName,VehicleRoutingAlgorithm algorithm, int run) {
|
||||
algorithm.addListener(new IterationStartsListener() {
|
||||
|
||||
@Override
|
||||
public void informIterationStarts(int i, VehicleRoutingProblem problem,Collection<VehicleRoutingProblemSolution> solutions) {
|
||||
/*
|
||||
* plot only distance-costs, i.e. without fixed costs
|
||||
*/
|
||||
VehicleRoutingProblemSolution bestOf = Solutions.bestOf(solutions);
|
||||
chartBuilder.addData(algorithmName, i, bestOf.getCost()-bestOf.getRoutes().size()*100.);
|
||||
}
|
||||
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
@Override
|
||||
public void calculationEnds(BenchmarkInstance p, String algorithmName,VehicleRoutingAlgorithm algorithm, int run,Collection<VehicleRoutingProblemSolution> solutions) {}
|
||||
|
||||
});
|
||||
/*
|
||||
* define dataCollector to collect an arbitrary number of indicators as well as solutions
|
||||
*/
|
||||
final DataCollector dataCollector = new DataCollector();
|
||||
computationalLab.addListener(new CalculationListener() {
|
||||
|
||||
@Override
|
||||
public void calculationStarts(BenchmarkInstance p, String algorithmName,VehicleRoutingAlgorithm algorithm, int run) {}
|
||||
|
||||
@Override
|
||||
public void calculationEnds(BenchmarkInstance p, String algorithmName,VehicleRoutingAlgorithm algorithm, int run,Collection<VehicleRoutingProblemSolution> solutions) {
|
||||
//memorize solution
|
||||
dataCollector.addSolution(p.name, algorithmName, run, Solutions.bestOf(solutions));
|
||||
}
|
||||
|
||||
});
|
||||
/*
|
||||
* determine number of threads to be used
|
||||
*/
|
||||
computationalLab.setThreads(2);
|
||||
/*
|
||||
* run the experiments
|
||||
*/
|
||||
computationalLab.run();
|
||||
|
||||
/*
|
||||
* plot the lineChart
|
||||
*/
|
||||
XYLineChartBuilder.saveChartAsPNG(chartBuilder.build(), "output/computationalStudies_alphaSensitivity.png");
|
||||
|
||||
/*
|
||||
* print best solution
|
||||
*/
|
||||
SolutionPrinter.print(vrp, Solutions.bestOf(dataCollector.getSolutions()), Print.VERBOSE);
|
||||
|
||||
/*
|
||||
* plot best
|
||||
*/
|
||||
Plotter plotter = new Plotter(vrp,Solutions.bestOf(dataCollector.getSolutions()));
|
||||
plotter.plot("output/bestOf.png", "bestOfR101");
|
||||
|
||||
}
|
||||
|
||||
private static AlgorithmConfig getAlgorithmConfig(String alpha) {
|
||||
AlgorithmConfig config = new AlgorithmConfig();
|
||||
XMLConfiguration xmlConfig = config.getXMLConfiguration();
|
||||
xmlConfig.setProperty("iterations",10000);
|
||||
xmlConfig.setProperty("construction.insertion[@name]","bestInsertion");
|
||||
|
||||
xmlConfig.setProperty("strategy.memory", 1);
|
||||
String searchStrategy = "strategy.searchStrategies.searchStrategy";
|
||||
|
||||
xmlConfig.setProperty(searchStrategy + "(0).selector[@name]","selectBest");
|
||||
xmlConfig.setProperty(searchStrategy + "(0).acceptor[@name]","schrimpfAcceptance");
|
||||
xmlConfig.setProperty(searchStrategy + "(0).acceptor.alpha",alpha);
|
||||
xmlConfig.setProperty(searchStrategy + "(0).acceptor.warmup","50");
|
||||
xmlConfig.setProperty(searchStrategy + "(0).modules.module(0)[@name]","ruin_and_recreate");
|
||||
xmlConfig.setProperty(searchStrategy + "(0).modules.module(0).ruin[@name]","randomRuin");
|
||||
xmlConfig.setProperty(searchStrategy + "(0).modules.module(0).ruin.share","0.3");
|
||||
xmlConfig.setProperty(searchStrategy + "(0).modules.module(0).insertion[@name]","bestInsertion");
|
||||
xmlConfig.setProperty(searchStrategy + "(0).probability",".5");
|
||||
|
||||
xmlConfig.setProperty(searchStrategy + "(1).selector[@name]","selectBest");
|
||||
xmlConfig.setProperty(searchStrategy + "(1).acceptor[@name]","schrimpfAcceptance");
|
||||
xmlConfig.setProperty(searchStrategy + "(1).modules.module(0)[@name]","ruin_and_recreate");
|
||||
xmlConfig.setProperty(searchStrategy + "(1).modules.module(0).ruin[@name]","radialRuin");
|
||||
xmlConfig.setProperty(searchStrategy + "(1).modules.module(0).ruin.share","0.1");
|
||||
xmlConfig.setProperty(searchStrategy + "(1).modules.module(0).insertion[@name]","bestInsertion");
|
||||
xmlConfig.setProperty(searchStrategy + "(1).probability","0.5");
|
||||
|
||||
return config;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
@ -76,7 +76,7 @@ public class ComputationalExperiments_schrimpf_vs_greedy {
|
|||
* add algorithms through factories
|
||||
*
|
||||
*
|
||||
* Define 3 algorithms
|
||||
* Define 2 algorithms
|
||||
* - algorithmsConfigWithSchrimpfAcceptance (4000 iterations)
|
||||
* - algorithmsConfigWithGreedyAcceptance (4000 iterations)
|
||||
*
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue